TTEP.CN > 故障 >

今日头条文章推荐的规则是什么 头条号文章不被推荐怎么办

  辛辛苦苦写的文章不被推荐?相信很多的作者都遇到过这样的问题。那么什么样的文章才会被推荐的机率更大呢?我们一起来看看吧。

  头条号文章不被推荐怎么办?
  一.机器是怎样理解你的文章的?
  在门户网站和传统新闻客户端上,哪些文章能上首页是由编辑们决定的,编辑们会在阅读完文章后,会决定是否将其推上版面。因为每个用户看到的页面都是相同的,编辑们的工作量虽然大,但还能够应付。而在今日头条客户端上,每位用户的信息流都是完全不同的,如果5亿用户的信息流都交由编辑来推荐,则是一件不可能完成的任务。
  但是机器可以做到,因为其「阅读」文章的方式,在速度上要远远胜过人类。系统会对文章进行特征识别,从而判断文章讲的是什么类型和领域的内容。特征识别的维度有很多,在这里我们重点解释「关键词」。
  系统会根据文章中出现的频率,提取出一些词语作为关键词,关键词的判定原则有二:
  词频高:如一篇体育类文章内容关于某场足球比赛,那么文章可能会出现的高频词就包括球员名字、足球术语或技巧等,如「C 罗」、「射门」、「突破」。
  同类文章中出现次数少:作者撰文时常用到的虚词、转折词等出现频率也很高,但它们不会作为关键词被提取出来,因为这些词在文章中是普遍存在的。
  系统判定出一篇文章的关键词后,会将这些关键词与文章分类模型进行比对,命中哪些分类词库关键词的比例大,文章即被打上该分类的标签。
  如,一篇文章排名靠前的关键词为「C 罗」、「射门」、「西甲」、「马德里」,那么该篇文章可能会被打上「足球」、「国际足球」、「西班牙」等标签。机器便是这样,完成对文章的初步认知。
  因为这种关键词识别机制的存在,作者应尽量避免在文中过度使用非常规词语,如活久见、腿玩年、城会玩等,给自己的文章增加理解障碍。行文用词规范,机器可能更懂你的文章。
  除文章正文关键词识别外,机器还会对标题进行关键词的识别和分类比对。因此,在标题中露出具代表性的实体词,可帮助机器理解你的文章。
  例如,同样一篇足球类文章,标题「大胡子梅西,大胡子阿奎罗,大胡子伊瓜因,阿根廷美洲杯冠军稳了!」,就比标题「三人蓄须明志,誓要实现多年远大理想」含义更明确,更利于系统识别,获得更多的推荐量。
  二.你的文章会被推荐给哪些用户?
  每个人的阅读兴趣都是大不相同的,个性化推荐机制要做的事情就是——让每位用户看到可能感兴趣的内容,——这也是用户每天会「沉迷」在今日头条上的原因。
  因此反过来,作者创作的内容也就只会被推荐给可能对它感兴趣的用户。比如,某一篇关于C罗的足球文章写得极出色,阅读量超过了100万,放在朋友圈是可以刷屏的爆款文章,但对足球毫无兴趣的用户在今日头条上仍然是看不到这篇文章的。
  这种精准推荐,是建立在机器对每位用户都有充分认知的前提下的。在机器中,每位用户实际是由大量数据构成的,用户的阅读兴趣就藏在这些数据中。
  不同数据对用户兴趣计算所占权重不同,数据包括:
  用户的基本信息
  性别、年龄、所处地理位置(城市或地区);
  使用机型、授权账户(如微博、微信等)、手机上经常使用的其他 App 等;
  用户主动订阅或喜欢的内容
  订阅帐号;
  订阅频道;
  关注的话题;
  机器通过计算得出的用户阅读兴趣
  用户阅读过的文章分类和关键词;
  用户聚类:相似类型用户还喜欢阅读的其他文章类型;
  用户在今日头条客户端主动标记「不感兴趣」的实体词或文章类型。
  根据以上数据,系统对用户的阅读兴趣就能有个基本的判断。一般来讲,用户使用产品时间越长,系统积累的阅读数据越多,对其兴趣的判断也就越准确。使用产品的用户越多,系统对用户聚类的判断也越准确。
  通过对数据的处理,每位用户将被机器打上各种标签,如一个用户阅读的文章中关键词排名靠前的是:C罗、皇家马德里、欧洲杯、小米、魅族、苹果。那么,这位用户可能被打上「足球、「皇马」、「科技」、「手机」、「米粉」等标签。不同的用户会被打上不同的标签。
  当一篇带有「C 罗」、「足球」标签的文章在进行推荐时,系统会将其自动匹配给带有「C 罗」或「足球」标签的用户,这便是推荐引擎的个性化推荐。当然,系统推荐的实际情况会远比这复杂得多,但推荐的基本原理便是,机器通过数据来理解文章和用户,并对两者进行匹配。
  三.你的文章是如何被推荐的?
  为让受欢迎的内容被更多用户看到,不受欢迎的内容不占用过多推荐资源。头条号文章在推荐时,会分批次推荐给对其感兴趣的用户。
  如何理解分批次推荐呢?文章首先会被推荐给一批对其最可能感兴趣的用户(这批用户的阅读标签与文章标签重合度最高,被系统认定最可能对该文章感兴趣。),这批用户产生的阅读数据,将对文章下一次的推荐起到决定性作用。数据包括点击率、收藏数、评论数、转发数、读完率,页面停留时间等,其中,点击率占的权重最高。这很好理解,能吸引众多用户点击的文章自然会被认为更可能是好文章。
  延伸阅读:
  扩大推荐机制(注意:以下举例仅用于说明点击率对文章推荐的影响,不代表实际推荐情况)
  文章的首次推荐,如果点击率低,系统认为文章不适合推荐给更多的用户,会减少二次推荐的推荐量;如果点击率高,系统则认为文章受用户喜欢,将进一步增加推荐量。以此类推,文章新一次的推荐量都以上一次推荐的点击率为依据。此外,文章过了时效期后,推荐量将明显衰减,时效期节点通常为24小时、72小时和一周。
  例如,一篇文章首次推荐给了1000个用户,如果这批用户的点击率较高,系统判定用户非常喜欢这篇文章,将其扩大推荐给10000个用户,如果这轮推荐用户的点击率仍然维持在较高水平,那么系统会将文章再次扩大推荐给30000个用户、50000个用户、100000个用户 ......推荐量和阅读量便如滚雪球一般节节攀升。直到文章过了24小时时效期,新一轮推荐的推荐量才会逐渐衰减。
  因为这种扩大推荐的机制,作者想获得更多的阅读量,就必须努力把各维度阅读数据(点击率、用户阅读时间、收藏数、评论数、转发数等)维持在高位水平。这就要求文章:
最近发表
赞助商链接